Cancer IO Sebinar: Ex vivo models in IO research 8.4.2021

CANCER IO SEBINAR SERIES 08.04.2021 at 15:00-16:30 (EEST).

Please find the recording on our Youtube channel


Session I: Ex vivo models in immuno-oncology research

This inter­active bi-monthly sebinar (seminar + webinar) series aims to bring you the newest devel­op­ments in the field of immune-oncology presented by leading sci­entists. Every sebinar will have an important inter­active element in the form of a panel dis­cussion, where the invited speaker dis­cusses a timely topic with local sci­entists and clini­cians. Sebinar attendants are wel­comed to par­ti­cipate in the dis­cussion using the Q&A feature. 

In the first edition of the Cancer IO Sebinar series (Thursday 8.4.2021; 15.00-16.30) we will hear about the latest devel­opment of patient-derived ex vivo models in an immuno-oncology setting, and discuss about the pos­sible future use of these models in clinical decision making. Our invited speaker is David Barbie from Dana-Farber Cancer Institute & Harvard Medical School (Bio­graphy below). 


15:00 – 15:10 Intro­duction to ex vivo models, Jeroen Pouwels / Research Coordinator in Cancer IO 

15:10 – 15:20 3D Solu­tions & Tissue Pre­ser­vation, Johana Kuncova-Kallio / Dir­ector in UPM Biomedicals 

15:20 – 16:10 Ex vivo systems incor­por­ating the tumor microen­vir­onment, Dr. David Barbie /  Dana-Farber Cancer Institute & Harvard Medical School 

16:10 – 16:30 Panel Dis­cussion: The use of ex vivo cul­tures in clinical decision making: Utopia or soon-to-be reality? 

Pan­elists: David Barbie, Johana Kuncova-Kallio, Jeroen Pouwels and Research Dir­ector Peeter Kari­htala, Hel­sinki Uni­versity Hospital

Session Chair: Heidi Haikala, Cancer IO & Dana-Farber Cancer Institute 

Join the event: Zoom link

More inform­ation: cancerio-​office@​helsinki.​fi


Biography for Dr. David Barbie: 

Dr. David A. Barbie is an Assistant Pro­fessor of Medicine at Harvard Medical School and Thoracic Onco­logist at the Dana-Farber Cancer Institute. He obtained an A.B. from Harvard College in 1997 and M.D. from Harvard Medical School in 2002. Dr. Barbie was an HHMI Medical Fellow from 1999-2000 between his 2nd and 3rd years of medical school, working in Dr. Ed Harlow’s lab at Mas­sachu­setts General Hos­pital. He com­pleted his res­idency in internal medicine at Mas­sachu­setts General Hos­pital in 2005, fol­lowed by a year as medical chief res­ident in 2006.  Dr. Barbie was a medical oncology fellow in the Dana-Farber­/­Partners Can­cerCare program, which he com­pleted in 2008. Fol­lowing a post-doc­toral fel­lowship in Dr. William Hahn’s lab at the Broad Institute, he received a tenure-track inde­pendent invest­igator pos­ition in 2010 at Dana-Farber, and a clinical pos­ition within the Lowe Center for Thoracic Oncology. 

Recent selected publications: 

Dynamic single-cell RNA sequencing iden­tifies immun­o­therapy per­sister cells fol­lowing PD-1 blockade. J Clin Invest. 2021 

Tumor-Derived cGAMP Reg­u­lates Activ­ation of the Vas­cu­lature. Front Immunol. 2020 

Inac­tiv­ation of Fbxw7 Impairs dsRNA Sensing and Confers Res­istance to PD-1 Blockade. Cancer Discov. 2020 

TBK1 Activ­ation by VHL Loss in Renal Cell Car­cinoma: A Novel HIF-Inde­pendent Vul­ner­ab­ility. Cancer Discov. 2020 

Use of Ex Vivo Patient-Derived Tumor Organ­o­typic Spheroids to Identify Com­bin­ation Ther­apies for HER2 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res. 2020 

Engin­eering approaches for studying immune-tumor cell inter­ac­tions and immun­o­therapy. iScience. 2020 

Sup­pression of STING Asso­ciated with LKB1 Loss in KRAS-Driven Lung Cancer. Cancer Discov. 2019 

Defining T Cell States Asso­ciated with Response to Check­point Immun­o­therapy in Melanoma. Cell. 2018 

A Cancer Cell Program Pro­motes T Cell Exclusion and Res­istance to Check­point Blockade. Cell. 2018 

Ex Vivo Pro­filing of PD-1 Blockade Using Organ­o­typic Tumor Spheroids. Cancer Discov. 2018 Feb;8(2):196-215. doi: 10.1158/2159-8290.CD-17-0833. Epub 2017 Nov 3.PMID: 29101162 

Full pub­lic­ation list: 


Soita 000 000 0000